Sleep-Dependent Plasticity Requires Cortical Activity
نویسندگان
چکیده
منابع مشابه
Sleep-dependent plasticity requires cortical activity.
Recent findings in humans and animals suggest that sleep promotes synaptic plasticity, but the underlying mechanisms have not been identified. We have demonstrated recently an important role for sleep in ocular dominance (OD) plasticity, a classic form of in vivo cortical remodeling triggered by monocular deprivation (MD) during a critical period of development. The mechanisms responsible for t...
متن کاملMechanisms of Sleep-Dependent Consolidation of Cortical Plasticity
Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process during ocular dominance plasticity (ODP)-a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolid...
متن کاملThe Sedating Antidepressant Trazodone Impairs Sleep-Dependent Cortical Plasticity
BACKGROUND Recent findings indicate that certain classes of hypnotics that target GABA(A) receptors impair sleep-dependent brain plasticity. However, the effects of hypnotics acting at monoamine receptors (e.g., the antidepressant trazodone) on this process are unknown. We therefore assessed the effects of commonly-prescribed medications for the treatment of insomnia (trazodone and the non-benz...
متن کاملSleep and olfactory cortical plasticity
In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory ...
متن کاملVisual activity and cortical rewiring: activity-dependent plasticity of cortical networks.
The mammalian cortex is organized anatomically into discrete areas, which receive, process, and transmit neural signals along functional pathways. These pathways form a system of complex networks that wire up through development and refine their connections into adulthood. Understanding the processes of cortical-pathway formation, maintenance, and experience-dependent plasticity has been among ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2005
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.2722-05.2005